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Abstract

Population attributable risk estimates offer a method of combining information on population

exposure and disease risk factors into a single measure. Univariate and multivariable methods exist

for calculating point estimates and variances under the assumption of equal sampling probabilities.

National Animal Health Monitoring System national studies typically use a complex survey design

(where selection probabilities vary by design strata), which makes use of these methods of

calculating variance inappropriate. We suggest the use of a method called `̀ delete-a-group''

jackknife to estimate the variance of population attributable risk when a complex survey design has

been implemented. We demonstrate the method using an example of Johne's disease. Advantages of

the `̀ delete-a-group'' jackknife method include simplicity of implementation and flexibility to

estimate variance for any point estimate of interest. Published by Elsevier Science B.V.

Keywords: Population attributable risk; Variance; Estimation; Johne's disease; National Animal Health

Monitoring System

1. Introduction

The population attributable risk (PAR), also referred to as `̀ etiologic fraction'',

`̀ attributable fraction'' and `̀ attributable risk'' (Kleinbaum et al., 1982) is a useful tool

for combining information concerning both the population exposure distribution and the
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effects of single or multiple factors on an individual's disease risk (Walter, 1980). Many

definitions have been proposed for PAR. In the case of a single dependent variable, PAR

can be defined as the fraction of the overall rate of occurrence of the outcome that can be

attributed uniquely to the presence of the risk factor. In a multivariable context, PAR can

be defined as the reduction in the proportion of the total disease experience in the

population that would be achieved by eliminating the exposure(s) of interest from the

population (while distributions of other factors in the population remain unchanged)

(Bruzzi et al., 1985; Rockhill et al., 1998).

PAR is widely used by epidemiologists studying diseases in humans in a variety of

settings including infectious diseases (Sun et al., 1999; Valeur-Jensen et al., 1999),

occupational and environmental epidemiology (Alavanja et al., 1996; Aronson et al.,

1996; Loomis et al., 1997) as well as injuries, cancer and other noninfectious diseases

(Madigan et al., 1995; Sosin et al., 1996; Perneger et al., 1999). In contrast, use of PAR

has not been applied widely in the realm of veterinary epidemiology. Thomas et al.

(1981) used PAR in a case-control study of mastitis caused by Mycoplasma species in

California dairy herds. Kapperud et al. (1993) estimated the PAR for hygiene and

husbandry practices related to the introduction of Campylobacter spp into broiler-chicken

flocks. Rohrbach et al. (1995) used PAR to determine the risk of laminitis in horses due to

exposure to endophyte. Wells et al. (1996), Smith et al. (1998) and Kabagambe et al.

(2000) applied PAR to dairy health problems.

Other measures of risk such as odds ratios or relative risks have been more-widely used

in veterinary epidemiology Ð probably (at least in part) due to the widespread knowledge

of these estimates. Also, computer software designed to handle the computation of point

estimates and associated measures of variability (variance, standard error, confidence

intervals) has made these tools readily available for both univariate and multivariable

analysis.

An example using PAR in a univariate context will help to demonstrate both the

computation as well as the interpretation. Suppose that we are interested in the

attributable risk (ra) for a specific exposure, A, on a disease outcome. The components

necessary to compute a univariate PAR include the probability of exposure, P(A), and the

relative risk for disease for the exposed versus the unexposed individuals (rr). PAR is

calculated (Fleiss, 1981) as

ra � P�A��rrÿ 1�
1� P�A��rrÿ 1�

Suppose, for example, a cross-sectional study yielded a probability of exposure, P(A),

equal to 0.1 and a relative risk of 2.0. The PAR would be approximately 0.09, i.e. about

9% of the disease outcome could have been prevented if the affects associated with

exposure A were eliminated. Now, suppose the probability of exposure, P(A), equals 0.3

but the relative risk remains at 2.0. The PAR would now be about 0.23. Almost one-fourth

of the disease outcome would have been prevented if the affects associated with exposure

A were eliminated. This example shows the value of incorporating both the exposure

probability and the risk estimate in a single measure because, considered alone, the risk

estimate would have been constant. Fleiss (1981) also presents a method for calculating

the variance associated with the univariate PAR estimate.
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Multivariable techniques (including logistic regression) commonly are used to model

epidemiologic data. A multivariable PAR has been developed by Bruzzi et al. (1985) that

uses estimates from a logistic model to calculate the effects of an exposure variable after

the effects of other exposure variables have been removed. Their method for computing

multivariable PAR (ra) incorporates the proportion of cases (pj) and the relative risk (rrj)

for each level (j levels) of the risk factor(s):

ra � 1ÿ
X

j

pj

rrj

This approach to calculate PAR has been used widely in human epidemiology and,

recently, by three veterinary epidemiological studies (Wells et al., 1996; Smith et al.,

1998; Kabagambe et al., 2000). Bruzzi et al. (1985), however, did not provide a method

for computing variance associated with their point estimate of PAR. Point estimates for

PAR provide a measure of central tendency for the sample data but do not provide any

measure of precision. Without a measure of precision it is difficult to interpret the

meaning of the point estimate. A PAR with a small associated confidence interval (based

on a relatively small standard error) provides a narrower range in which you might expect

the true PAR to lie compared to the same point estimate with a wider confidence interval.

For this reason, it is important to develop a method for creating a measure of precision

such as the variance or standard error.

Kooperberg and Petitti (1991) used a data-replication method (called `̀ bootstrapping'')

to estimate standard errors for PAR from an unmatched case-control study where logistic

regression was used to estimate relative risk. Bootstrapping is a method for creating

variance estimates where replicate samples are created from the original sample using with-

replacement sampling. The replicate samples are used to create an estimated variance.

Benichou and Gail (1990) derived variance estimates for PAR using the logistic model under

various designs for sampling the controls. Taylor-series expansions (also called the `̀ delta

method'') were used to estimate the PAR variance. As part of the total variance estimate,

they also accounted for the covariances between logistic-model parameters and the

proportions of cases by estimating them from a Taylor-series expansion on an implicit

function for discrete variables and an influence function for continuous risk factors.

The National Animal Health Monitoring System (NAHMS) first estimated PAR as part

of the analysis of the Dairy'96 study, but did not compute an associated measure of

variability (Wells et al., 1996). The lack of a variance estimate is due to the nature of the

sampling design that NAHMS national studies use. The study-design selection is

motivated by the primary purpose of NAHMS studies (which is to produce valid national

estimates of animal health and management). NAHMS national studies typically utilize a

stratified sampling design with unequal selection probabilities within the strata (Dargatz

and Hill, 1996). The goal of this sampling design is to allow for selection of the less-

common larger farms (which represent a greater proportion of the animals) at a higher

rate than the more-common smaller farms where fewer animals reside. If the selection

were entirely random, the small farms would comprise a large proportion of the sample

and fewer animals would be represented in the sample. The unequal selection

probabilities result in the need to weight the sample data during analysis to produce

unbiased population estimates (Dargatz and Hill, 1996). The PAR point estimates for the
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Dairy'96 study were created using the appropriate weights to create an unbiased estimate

(Wells et al., 1996), but the variance estimate developed by Benichou and Gail (1990) and

the bootstrap method applied by Kooperberg and Petitti (1991) assume equal selection

probabilities and are not appropriate for the weighted NAHMS sample data. In the

absence of an appropriate method for obtaining a valid measure of variance, only the

point estimate for PAR was presented.

Several specialized statistical software packages are now available that accommodate

weighted data from complex surveys. The most-common approach is to use a Taylor-

series expansion to approximate the variance. The software packages will provide

variance estimates for a number of statistics including means, proportions and logistic

models, but not for PAR. Although it is plausible to create a Taylor-series expansion for

PAR, the problem is not trivial. Given the lack of available software or a corresponding

weighted method for Benichou and Gail (1990), other options must be sought.

Reporting an unweighted PAR and associated variance is an option but can lead to

biased point and variance estimates. Lemeshow et al. (1998) found that descriptive

measures (including proportions) can be compromised seriously if the sampling design is

ignored. Similarly, the variance can be biased (sometimes in unpredictable directions) if

the sampling design and weights are ignored. A measure of the change in variation that

can occur when using a complex survey design as compared to a simple random design is

called the `̀ design effect''. The design effect can be defined as the correct variance

estimate for the study design divided by the variance estimate that would have been

obtained if the sample was considered to be a simple random sample (Dargatz and Hill,

1996). Dargatz and Hill (1996) showed design effects for a NAHMS cow/calf study that

ranged from 0.25 to 3.09. Although there are issues related to the computation of the

design effect, their example shows that the variance can be severely under- or over-

estimated within a single study.

Recently, studies with underlying complex sampling designs have used PAR and have

sought other solutions to the problem of obtaining associated variance estimates.

Madigan et al. (1995) used a Poisson-regression model to calculate the relative-risk

component of PAR for data from the National Health and Nutrition Examination Survey

Epidemiologic Follow-up Study. They chose to ignore the variability of the within risk-

factor prevalences (equivalent to the numerator in the multivariable PAR equation)

because it was considered small compared to the variability of the incidence rates (the

denominator in the multivariable PAR equation).

Basu and Landis (1995) explored the use of two logistic models for PAR using

weighted data from a complex, cross-sectional sampling design. Their covariate-adjusted

PAR estimator is equivalent to that of Bruzzi et al. (1985) without the rare-disease assumption

that must be made to estimate relative risk from observed odds ratios. Although Basu and

Landis (1995) treated the exposure prevalences (numerator) as random variables due to

the cross-sectional nature of their survey design, they chose to make the assumption of

simple random sampling and ignored the weights and complex sample design.

These approaches to implementing PAR in the context of complex survey designs have

either made some simplifying assumptions or have ignored features of the sampling

design. The objectives of this paper are to apply the multivariable PAR in an animal-

production context and to demonstrate the application of a type of variance estimation
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procedure called the `̀ jackknife'' to estimate an appropriate variance measure for PAR.

We describe the typical jackknife estimator but we present an alternative modification

called the `̀ delete-a-group'' (DAG) jackknife method described in detail by Kott (1998).

To demonstrate the utility of the jackknife method in adding value to PAF point estimates,

we use the example of a risk-factor model for Johne's disease based on a multiple

logistic-regression model using data from the NAHMS Dairy'96 study (Wells and

Wagner, 2000).

2. Methods

Jackknife estimation is part of a general class of estimation procedures called

`̀ resampling methods'' that are used for estimating variance (e.g. mean squared error) or

bias (Efron, 1982). Resampling methods often are used when it is difficult to estimate

variances directly (as is the case with PAR). When implementing the jackknife, the

parameter of interest initially is estimated with the complete data set. Then, the parameter

estimates are recalculated repeatedly Ð each time, with a new single observation deleted

from the data until all observations have been omitted a single time. The sum of

differences between the each individual estimate and the full estimate times a correction

factor provides a measure of the variability.

Varjack � nÿ 1

n

Xn

i�1

�ŷ�i� ÿ ŷ�:��2

where ŷ�:� is the overall parameter estimate and ŷ�i� the parameter estimate with the ith

observation removed.

To demonstrate the use of a jackknife variance estimate we could examine a simple

example of estimating the variance of a mean of a sample of five observations (3, 5, 6, 8,

10). The overall mean equals 6.4 (variance � 1:46, standard error � 1:21). The five

replicate means (means calculated with each observation sequentially deleted) are 7.25,

6.75, 6.50, 6.00 and 5.50, respectively. The sum of the squared differences between these

means and the overall mean is 1.825. Multiplying the 1.825 by 4
5

(the coefficient above,

�nÿ 1�=n) provides an estimate of the variance of 1.46 and a standard error (square root

of the variance of the mean) of 1.21. The parametric equivalent, or the usual variance and

standard error, for the full sample is equivalent to the jackknife variance estimate because

all samples had the same weights.

Rao et al. (1992) reviewed resampling methods for complex survey designs. They

discuss the use of a modified jackknife called the `̀ delete-1-cluster jackknife variance

estimator''. The delete-1 method is very similar to the simple random-sample equivalent

with some modification for the stratification. The weight from the deleted observation is

transferred to the remaining observations in the stratum while weights for observations in

other strata remain unchanged. SUDAAN1 (a software package for analyzing complex

1 SUDAAN: Software for the Statistical Analysis of Correlated Data, Research Triangle Institute, PO Box

12194, Research Triangle Park, NC 27709.
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survey data) has adopted this jackknife variance estimator for estimates including means,

proportions and logistic regression. Unfortunately, SUDAAN does neither compute PAR

nor estimate its associated variance.

Kott (1998) described a version of the jackknife he called the DAG approach. This

jackknife deletes a different group of observations per estimate recalculation. Each such

recalculation is called a `̀ replicate'', which is standard jackknife nomenclature. The DAG

jackknife is being used for statistics computed from National Agricultural Statistics

Service (NASS) surveys. We chose to use the DAG jackknife method to estimate the

variance of PAR. We followed the approach taken by Kott (1998) to implement the DAG

jackknife.

The formation of replicate weights (i.e. weights used for the calculation of each

jackknife replicate) is the first step in the DAG jackknife estimation process. Kott's

instructions are to order the sample so that primary sampling units in the same design

stratum are listed together. The design strata are the strata or divisions that are used to

facilitate sample selection at the study initiation. The complete sample is then

systematically separated into R groups, which are used to create R sets of replicate

weights as described below. There are 15 such groups in NASS surveys and we have used

the same number for this NAHMS survey. These groups are sequentially `̀ deleted'' to

form replicate estimates. Operationally, for the rth replicate estimate �r � 1; . . . ; 15�, the

weights for each unit in group r are set to zero. Setting the weight of a group to 0 has the

affect of removing the observations that comprise the group (approximately 1
15

of all the

observations) from the PAF replicate calculation. For a stratified random sample, the

replicate-r weight for a unit not in group r is the unit's weight scaled so that the sum of

the replicate weights in a variance stratum equals the sum of the weights prior to deletion

of a replicate group. When the weights within stratum are homogeneous, the scaling

factor equals the number of observations in the group divided by the number of

observations in the group minus 1. The sum of the scaled weights also is the stratum's

population size.

Kott (1998) argued that the DAG jackknife can have an unreasonably large bias when

the stratum sample size is <5. The NAHMS herd-level data were stratified initially by size

class within state. The original design strata were four herd-size classes within 20 states.

The number of observations per state/herd-size strata remained above 5 except in the

small-herd categories. To assure that there were at least five sample units (herds) in every

stratum, state design strata within the same size class were collapsed into regional

variance strata.2 The two smallest herd-size classes (1±49 and 50±99) within the same

region likewise were collapsed into each other. This type of collapsing will lead to

variance estimates that are, if anything, conservative (Wolter, 1985). The resulting

observations in variance strata may have had different sampling fractions and,

consequently, weights. Simple scaling of replicate weights will no longer ensure that

the sum of the replicate weights will equal the sum of the original stratum weights.

Instead, the weights of the remaining observations were scaled by the sum of all the

2 Midwest (Iowa, Illinois, Indiana, Michigan, Minnesota, Missouri, Ohio, Wisconsin), Northeast (New York,

Pennsylvania, Vermont), Southeast (Florida, Kentucky, Tennessee), West (California, Idaho, New Mexico,

Oregon, Texas, Washington).
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original weights in the stratum divided by the sum of the weights of the remaining

observations in the stratum after an observation was deleted. In this manner, the sums of

the replicate weights in each variance stratum were scaled to equal the sums of the

original weights in each stratum.

Weighted PAR point estimates were computed following Bruzzi et al. (1985) for the

complete data set and for each replicate weight set �n � 15� using a program written in

SAS (SAS, 1990). The logistic-model component of PAR was reparameterized from the

model presented by Wells and Wagner (2000) to set the risk factor level with the lowest

odds ratio to be the reference level (as specified by Bruzzi et al., 1985).

The DAG jackknife variance estimator for the weighted PAR is

Varpar � 15ÿ 1

15

X15

i�1

�ar�i� ÿ ar�:��2

where ar(i) is the PAR for the ith weighted replicate and ar(.) the PAR point estimate from

the complete data. The square root of the variance (the standard error) was computed and

a 95% confidence interval was constructed using a T-distribution with 14 degrees of

freedom (the number of replicates minus one).

During repeated calculation of the PAR required for the DAG jackknife variance

estimate, repeated estimates of the components of the PAR (including estimates from the

multiple logistic-regression model and the proportion of cases at different levels of risk

factors) necessarily were calculated. These replicate estimates were used to calculate

DAG variance estimates for each PAR. We also calculated variance estimates for the

components of PAR using the two methods available in SUDAAN: jackknife (delete-1)

and Taylor-series approximation. Calculation of the variance by three methods allowed

for examination of the results to look for patterns or inconsistencies in estimates produced

by the methods. SUDAAN will not directly estimate PAR (which motivates the use of the

DAG jackknife), so there is no comparison for PAR variance between the DAG jackknife

and the variance calculations used by SUDAAN.

3. Results

The multiple logistic-regression model developed by Wells and Wagner (2000)

identified five risk factors for a dairy herd being positive under their testing criteria

(Table 1). The proportion of cases (Johne's-infected herds) at different levels of these

risk factors (the first component of PAR) indicated relatively high percentages of

positive herds in the largest herd-size category (300 or more milk cows) and in the

Midwest region. The reparameterized logistic-regression model was calculated

(reference level set to the lowest risk category) to obtain the second component of

the PAR (Table 1).

For each of the five risk factors, PAR point estimates, associated standard errors, and

95% confidence intervals are presented in Table 2. Region of the country and percent of

milk cows not born on the operation had the highest PAR point estimates. Specifically,

these results suggest that eliminating the effects associated with percent of milk cows not
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born on the operation would prevent almost one-third (33%) of the Johne's-infected

herds. Standard errors for the PAR are relatively large with coefficients of variation

ranging from 32.5 to 42.0%. The resulting confidence intervals are correspondingly wide

and the upper limits are very high for region and percent of milk cows not born on the

operation (0.73 and 0.62, respectively).

SUDAAN does not produce a standard-error estimate for the PAR, so there is no

available basis for comparing our DAG jackknife standard errors with the standard

Table 1

Point estimates for proportion of all positive herds within factors and the reparameterized logistic-model

coefficients

Risk factor and level No. of responses Percent of responses Percent of cases Betas

No. of milk cows

Fewer than 100 150 15.6 8.3 0.0

100±299 303 31.6 21.1 0.4

300 or more 507 52.8 70.6 1.4

Region of the country

West 220 22.9 3.7 0.0

Midwest 436 45.4 66.9 0.8

Northeast 268 27.9 20.1 0.3

Southeast 36 3.8 9.3 0.2

Percent of milk cows not born on the operation

0% 267 27.8 25.4 0.0

1±24% 379 39.5 41.5 0.5

25% or more 314 32.7 33.1 0.7

Use of multiple cow maternity housing in previous year

No 814 84.8 42.8 0.0

Yes 146 15.2 57.2 0.4

Use of multiple calf preweaned housing in previous year

No 537 55.9 49.8 0.0

Yes 423 44.1 50.2 0.4

Table 2

PAR point estimates with DAG jackknife variance estimates

Risk factor PAR point

estimate

Standard

error

Coefficient

of variation

Lower

CI

Upper

CI

No. of milk cows 0.14 0.05 36.64 0.03 0.24

Region of country 0.43 0.14 32.50 0.13 0.73

Percent of milk cows not born

on the operation

0.33 0.14 41.60 0.04 0.62

Use of multiple cow maternity

housing in the previous year

0.15 0.06 42.00 0.01 0.28

Use of multiple calf preweaned

housing in the previous year

0.17 0.06 35.69 0.04 0.30
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Table 3

Standard-error estimates for proportion of cases component of PAR

Risk factor and level DAG jackknife S.E. Delete-1 jackknife S.E. Taylor-series S.E.

No. of milk cows

Fewer than 100 1.0 1.3 1.3

100±299 2.9 3.1 2.7

300 or more 3.3 3.4 3.1

Region of the country

West 1.6 2.0 0.8

Midwest 4.0 3.6 3.3

Northeast 3.5 3.1 3.0

Southeast 1.4 1.3 1.3

Percent of milk cows not born on the operation

0% 5.1 3.9 3.8

1±24% 4.2 4.5 4.4

25% or more 3.9 4.1 3.9

Use of multiple cow maternity housing in previous year

Yes 6.0 4.5 4.4

Use of multiple calf preweaned housing in previous year

Yes 4.1 4.5 4.3

Table 4

Standard-error estimates for logistic-model coefficients component of PAR

Parameter DAG jackknife S.E. Delete-1 jackknife S.E. Taylor-series S.E.

No. of milk cows

Fewer than 100 ± ± ±

100±299 0.25 0.23 0.21

300 or more 0.28 0.31 0.30

Region of country

West ± ± ±

Midwest 0.31 0.28 0.28

Northeast 0.28 0.32 0.31

Southeast 0.68 0.75 0.36

Percent of milk cows not born on the operation

0% ± ± ±

1±24% 0.31 0.27 0.26

25% or more 0.29 0.27 0.26

Use of multiple cow maternity housing in previous year

No ± ± ±

Yes 0.28 0.22 0.21

Use of multiple calf preweaned housing in previous year

No ± ± ±

Yes 0.16 0.22 0.21
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errors calculated using the two methods implemented in SUDAAN. However, SUDAAN

does produce standard-error estimates for proportions and logistic-model coefficients.

DAG standard-error estimates associated with the percent of cases in each risk factor

level are similar to those produced using either SUDAAN's Taylor-series approximation

and its delete-1 jackknife estimation procedure (Table 3). The DAG standard-error

estimates for the logistic-model-coefficients component of PAR tend to be similar to

both the Taylor series and jackknife (Table 4). In the southeast region (where the sample

size was lowest), both of the jackknife techniques (DAG and SUDAAN) provided

standard-error estimates that appeared larger than those from the Taylor-series

approximation.

4. Discussion

The DAG methodology provided a straightforward method for calculation of standard

errors and confidence intervals under this complex cross-sectional design. Both the study

design and the weights were accounted for in the methodology. However, the DAG

jackknife assumes at least five observations per stratum, which was not the case in some

of our design strata. Prior to performing the DAG jackknife, we collapsed design strata

with fewer than five observations into variance stratum. The resulting observations in

variance strata had different sampling fractions and, consequently, weights. During the

implementation of the DAG jackknife, the weight of the omitted observation is shared

with the remaining observations in the stratum. We accounted for the unequal weights by

multiplying the weights of the observations remaining in the strata by the ratio of the sum

of the original weights and the sum of the weights of the remaining observations. In this

manner, the sums of the replicate weights in a variance stratum are scaled to equal the

sums of the original weights in each stratum. Biologically, this implies that the

management practices and other characteristics of the omitted operation can be

represented by the remaining operations in the stratum. Whenever weights are re-

distributed within any design or post strata (including weights for nonresponse

adjustments), there is the potential for introducing some bias but we believe that the

regional variance strata that we constructed reflect geographic areas of similar production

management.

The DAG estimates of variance were close to but often smaller (11 of 21 estimates)

than the variance estimates produced using the jackknife methodology implemented by

SUDAAN (delete-1) and larger than the estimates produced using the Taylor-series

approximation (15 of 21 estimates). Both jackknife methods appeared to have inflated

estimates of variance associated with the logistic-model coefficient for the southeast

region relative to the Taylor-series approximation. Compared to the delete-1 method, the

DAG method is less computer-intensive (requiring only 15 jackknife iterations versus a

number equivalent to the sample size).

PAR allows for the combination of factor-prevalence information and risk-factor

models and thus can provide more information than either component alone. Implying

outcomes of interest are attributable to specific factors must be done cautiously, however

Ð especially in a study that was undertaken using a cross-sectional design. Rockhill et al.
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(1998) listed the assumptions that are necessary to make valid interpretation of the PAR.

These assumptions include a causal relationship between the risk factor and the outcome,

an immediate reduction in risk by the formerly exposed after the risk factor is eliminated,

and independence of the considered risk factors from other factors that may influence

disease risk. In this study, two risk factors (region and herd size) likely are surrogates for

other risk factors that may include climate, density, and management practices that were

not investigated but which relate to the two risk factors. A direct causal mechanism is

neither plausible nor do we expect that region and herd size are independent of other

unmeasured risk factors. The large associated PAR values, though, suggest that there is a

substantial amount of the risk for being positive for Johne's disease that we cannot

specifically associate with management factors.

In the context of a cross-sectional study alone, it is not possible to establish the

existence of a causal relationship. Examination of relationships that may represent a

biological process with causal links is appropriate. In this study, the risk factor with the

highest point estimate for PAR (other than region) was the percent of cows not born on

the operation. The primary known method of transmission of Johne's disease from herd to

herd is through the introduction of infected though healthy-appearing cattle (Sweeney,

1996). The other risk factors that contributed to the PAR both related to multiple-animal

housing (maternity cow and preweaning calf). Within-herd transmission is thought to

occur most commonly at the time of calving or soon after birth through oral ingestion of

infected feces. The risk of transmission may increase if multiple cattle are housed

together, resulting in greater exposure of calves to contaminated fecal material.

This study provides the first PAR point and variance (standard errors) estimates for

factors in the prevention and control of Johne's disease. The value in calculation of the

variance estimates resides in our ability to examine the reliability of these point estimates.

Large coefficients of variation and wide confidence intervals should lead to more-

conservative inferential conclusions than would result from only assessing the point

estimate. Similarly, the variability is indicative of issues that might be considered in

designing further studies. These inferences and conclusions are possible due to the

implementation of the DAG group method to calculate an appropriate measure of

variability for the data obtained from a complex sampling design.

In conclusion, we believe the DAG jackknife method Ð as a tool for estimating

variances under complex survey designs Ð has two primary advantages. First, the DAG

jackknife can be used to estimate the variance for any point estimate of interest in a

complex survey without requiring the potentially rigorous process of developing a Taylor-

series approximation for the variance. Secondly, implementation of the method is

relatively simple and less computer-intensive than a delete-1 jackknife Ð while

providing roughly equivalent variance estimates.
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